在本文中,我们介绍链接,一个1亿个自由度平面连锁机制和11亿个耦合器曲线的数据集,其比任何现有的平面机制数据库大1000倍以上,并且不仅限于特定种类的机制,例如作为四杆,六个栏,\ etc,通常是大多数数据库所包含的内容。链接由各种组件组成,包括1亿个机制,每种机制的仿真数据,每种机制生成的标准化路径,一组策划的路径,用于生成数据和模拟机制的代码以及用于交互式的实时Web演示连锁机制的设计。提供了策划的路径作为消除通过机制生成的路径中的偏差的量度,从而使设计空间表示更加均匀。在本文中,我们讨论了如何生成如此大的数据集以及如何通过此类量表克服重大问题的细节。为了能够生成如此大的数据集,我们介绍了一个新的操作员来生成1-DOF机制拓扑,此外,我们采取了许多步骤来加快机制的慢速模拟,并在大量线程中并行模拟器并行将模拟器并行处理。导致模拟的速度比简单的模拟算法快800倍。这是平均必须给出的,生成的500名候选者中有1个是有效的〜(所有必须模拟以确定其有效性),这意味着必须对本数据集的生成进行数十亿个模拟。然后,我们通过基于双向倒角距离的形状检索研究来证明数据集的深度,在该研究中,我们显示如何直接使用数据集来找到可以非常接近所需目标路径的路径的机制。
translated by 谷歌翻译
为了促进开发新模型以弥合机器和人类社会情报之间的差距,最近提议的婴儿直觉基准(Arxiv:2102.11938)提供了一系列任务,旨在评估代理商的目标和行动,即使是年轻的婴儿也表现出的表现,。在这里,我们根据层次的贝叶斯心理理论(HBTOM)提出了该基准的原则性贝叶斯解决方案。通过在代理目标和处置上包括层次的先验,对我们的HBTOM模型的推断几乎可以学习代理的效率和偏好,然后可以将其用于常识性的合理性判断,以判断有关后续代理行为。这种方法在大多数基准任务上实现了几乎完美的准确性,在产生可解释的人类的推论的同时,超过了深度学习和模仿学习基准,证明了结构化贝叶斯人的人类社会认知模型的优势。
translated by 谷歌翻译
对象看起来和声音的方式提供了对其物理特性的互补反射。在许多设置中,视觉和试听的线索都异步到达,但必须集成,就像我们听到一个物体掉落在地板上,然后必须找到它时。在本文中,我们介绍了一个设置,用于研究3D虚拟环境中的多模式对象定位。一个物体在房间的某个地方掉落。配备了摄像头和麦克风的具体机器人剂必须通过将音频和视觉信号与知识的基础物理学结合来确定已删除的对象以及位置。为了研究此问题,我们生成了一个大规模数据集 - 倒下的对象数据集 - 其中包括64个房间中30个物理对象类别的8000个实例。该数据集使用Threedworld平台,该平台可以模拟基于物理的影响声音和在影片设置中对象之间的复杂物理交互。作为解决这一挑战的第一步,我们基于模仿学习,强化学习和模块化计划,开发了一组具体的代理基线,并对这项新任务的挑战进行了深入的分析。
translated by 谷歌翻译
我们介绍了ThreedWorld(TDW),是交互式多模态物理模拟的平台。 TDW能够模拟高保真感官数据和富裕的3D环境中的移动代理和对象之间的物理交互。独特的属性包括:实时近光 - 真实图像渲染;对象和环境库,以及他们定制的例程;有效构建新环境课程的生成程序;高保真音频渲染;各种材料类型的现实物理相互作用,包括布料,液体和可变形物体;可定制的代理体现AI代理商;并支持与VR设备的人类交互。 TDW的API使多个代理能够在模拟中进行交互,并返回一系列表示世界状态的传感器和物理数据。我们在计算机视觉,机器学习和认知科学中的新兴的研究方向上提供了通过TDW的初始实验,包括多模态物理场景理解,物理动态预测,多代理交互,像孩子一样学习的模型,并注意研究人类和神经网络。
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. When executing SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, we can reach 60% sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches.
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
Model quantization enables the deployment of deep neural networks under resource-constrained devices. Vector quantization aims at reducing the model size by indexing model weights with full-precision embeddings, i.e., codewords, while the index needs to be restored to 32-bit during computation. Binary and other low-precision quantization methods can reduce the model size up to 32$\times$, however, at the cost of a considerable accuracy drop. In this paper, we propose an efficient framework for ternary quantization to produce smaller and more accurate compressed models. By integrating hyperspherical learning, pruning and reinitialization, our proposed Hyperspherical Quantization (HQ) method reduces the cosine distance between the full-precision and ternary weights, thus reducing the bias of the straight-through gradient estimator during ternary quantization. Compared with existing work at similar compression levels ($\sim$30$\times$, $\sim$40$\times$), our method significantly improves the test accuracy and reduces the model size.
translated by 谷歌翻译
Most existing pruning works are resource-intensive, requiring retraining or fine-tuning of the pruned models for accuracy. We propose a retraining-free pruning method based on hyperspherical learning and loss penalty terms. The proposed loss penalty term pushes some of the model weights far from zero, while the rest weight values are pushed near zero and can be safely pruned with no need for retraining and a negligible accuracy drop. In addition, our proposed method can instantly recover the accuracy of a pruned model by replacing the pruned values with their mean value. Our method obtains state-of-the-art results in retraining-free pruning and is evaluated on ResNet-18/50 and MobileNetV2 with ImageNet dataset. One can easily get a 50\% pruned ResNet18 model with a 0.47\% accuracy drop. With fine-tuning, the experiment results show that our method can significantly boost the accuracy of the pruned models compared with existing works. For example, the accuracy of a 70\% pruned (except the first convolutional layer) MobileNetV2 model only drops 3.5\%, much less than the 7\% $\sim$ 10\% accuracy drop with conventional methods.
translated by 谷歌翻译
Most of the existing works use projection functions for ternary quantization in discrete space. Scaling factors and thresholds are used in some cases to improve the model accuracy. However, the gradients used for optimization are inaccurate and result in a notable accuracy gap between the full precision and ternary models. To get more accurate gradients, some works gradually increase the discrete portion of the full precision weights in the forward propagation pass, e.g., using temperature-based Sigmoid function. Instead of directly performing ternary quantization in discrete space, we push full precision weights close to ternary ones through regularization term prior to ternary quantization. In addition, inspired by the temperature-based method, we introduce a re-scaling factor to obtain more accurate gradients by simulating the derivatives of Sigmoid function. The experimental results show that our method can significantly improve the accuracy of ternary quantization in both image classification and object detection tasks.
translated by 谷歌翻译